You are cordially invited to join us at Hong Kong In Asia World Expo Fair 2024:
As it does at all three of the major Hong Kong shows, MID House of Diamonds will mount a massive display of merchandise at the In Asia World Expo 2024 featuring a large collection of white and fancy-colored loose diamonds, including blue, pink, green and yellow, in all shapes and sizes from 0.30 carats to plus-10.00 carats.
All eight of the company’s international sales offices will be sending much of their top-quality material to the show, among them a selection of rare GIA certified loose diamonds. Also on exhibition will be a collection of unique, high-end diamond jewelry, including rings, necklaces, bracelets and earrings, featuring white and fancy-colored diamonds.
MID House of Diamond booth will be located at the AsiaWorld Export, Booth 7P14, September 2024. It already is possible to set up an appointment with MID at the show by contacting the company’s Hong Kong office, led by Rafael Kish and Ehud Gavrielov, at tel: +852-2-545-7118 or email: [email protected].
Please call +852-2-545-7118 or send us an email at [email protected] to schedule an appointment or to request a copy of our latest custom design catalog.3in4
MID House of Diamonds will be among the exhibitors at the June 2020 JCK Vegas Show. Come say Hi!
Lorem ipsum dolor sit amet conse ctetur adipisicing elit.
Ipsum dolor sit amet conse ctetur adipisicing elit, sed do eiusmod tempor incididunt.
Dolor sit amet conse ctetur adipisicing elit, sed do eiusmod tempor.
580 5th Ave #3003, New York, NY 10036
+1-212-391-1121
+1-877-391-1121
Blog
Home » Diamonds blog » Scientists Study Diamonds Formed from Fossil Fuels
Focus on
A study recently made public by Stanford University and the SLAC National Accelerator Laboratory shows how diamonds can be made from a type of hydrogen and carbon molecule found in crude oil and natural gas.
“What’s exciting about this paper is it shows a way of cheating the thermodynamics of what’s typically required for diamond formation,” stated Rodney Ewing, a geologist from Stanford, who co-authored on the paper, which was published February 21, 2020, in Science Advances.
“We wanted to see just a clean system, in which a single substance transforms into pure diamond – without a catalyst,” said the study’s lead author, Sulgiye Park, a postdoctoral research fellow at Stanford’s School of Earth, Energy & Environmental Sciences Diamondoid Models.
With the long-used High Pressure-Hight Temperature method of synthesizing diamonds, a catalyst has been required. Often a metal, it has tended tends to diminish the quality of the final product.
NEW METHOD OF SYNTHESIZING DIAMONDS DISCOVERED
To create the man-made diamonds, the research team experimented with three types of powder refined from tankers full of petroleum. According to the research paper, they resembled rock salt, but through a powerful microscope it is possible distinguish atoms arranged in the same spatial pattern as the atoms that make up diamond crystal, divided up into smaller units composed of one, two or three cages. Unlike diamond, which is pure carbon, the powders also contain hydrogen.
The researchers then placed the samples into a pressure chamber, which presses the material between two polished diamonds. By hand-turning a screw, they were able to simulate the types of pressure typical at the depth beneath the surface of the Earth where natural diamonds are located.
The samples with then subject to high temperatures using a with a laser. What they discovered was that the three-cage samples, called triamantane, reorganize itself into diamond with surprisingly little energy, with the hydrogen component falling away.
In the meantime, the extremely small sample size that could be to the anvil cell makes this approach impractical for synthesizing much more than extremely small stones, the scientists believe that the have made progress in a new method for synthesizing large number of diamonds.
Scientists at the Massachusetts Institute of Technology (MIT discovered a method of manipulating diamond crystals. When in nano-needle form, they could bend and stretch it by as much as 9 percent.
BENDING NANO-DIAMOND NEEDLES
In another research project, this one conducted at the Massachusetts Institute of Technology (MIT), scientists discovered a method of manipulating diamond crystals. What they showed was that when the diamond was in nano-needle form, they could bend and stretch it by as much as 9 percent. In bulk form flexibility was only 1 percent.
The scientists say that flexible diamond nano-needles could have a variety of applications, from delivering drugs into cancer cells to improving the design of data storage devices.
“It was very surprising to see the amount of elastic deformation the nanoscale diamond could sustain,” Ming Dao, an MIT scientist.
To manage the experiment, the scientists used a chemical vapor deposition (CVD) process, which is able to produce material coatings on a very small scale. The diamond needles were a little over two micrometers in size.
The deformation of 9 percent completely reversed itself once the pressure was removed, on condition that the needle was made of a single diamond crystal.